Journal of Organometallic Chemistry, 423 (1992) C5-C8 Elsevier Sequoia S.A., Lausanne JOM 22349PC

Preliminary communication

Synthesis, reactivity and crystal structure of trimesitylgermylamine, Mes₃GeNH₂

Monique Rivière-Baudet *, Alain Morère

Laboratoire de Chimie des Organominéraux, URA 477 du CNRS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cédex (France)

James F. Britten and Mario Onyszchuk

Department of Chemistry, McGill University, Montréal, Québec, H3A 2K6 (Canada) (Received April 30, 1991)

Abstract

Trimesitylgermylamine, Mcs_3GeNH_2 , prepared in high yield by the coupling of Mes_3GeCl ($Mes = 2,4,6-Me_3C_6H_2$) with NaNH₂ or LiNH₂, has been fully characterized by ¹H and ¹³C NMR, IR and mass spectrometry. It is a rare example of a stable primary germylamine, melting at 166°C, which is only slowly cleaved by H₂O, CH₃OH, HCl or phenol. indicating that the central Ge atom is protected from attack by the mesityl groups. Unlike other germylamines, Mes_3GeNH_2 reacts with ¹BuCOCl to give the *N*-substituted amide, $Mes_3GeNHCO^{1}Bu$, rather than Mes_3GeCl . Preliminary X-ray crystallographic analyses reveal that the Ge atom has approximate tetrahedral coordination with an average Ge-C bond length of 1.978(3) Å and a Ge-N bond length of 1.854(3) Å, and crowding around the Ge atom so that it is shielded from attack by approaching reactants.

Only two primary germylamines have so far been described, R_3GeNH_2 where R = Ph [1] and ⁱPr [2,3], and these are not stable. For smaller substituents such compounds undergo spontaneous deamination into the corresponding secondary amines [4,5] (eq. 1).

$$2 R_{3} \text{GeNH}_{2} \longrightarrow (R_{3} \text{Ge})_{2} \text{NH} + \text{NH}_{3}$$
(1)

We have synthesized Mes_3GeNH_2 in order to study the influence of steric effects upon the stability and reactivity of primary germylamines. Our preliminary results are outlined below, including the X-ray crystal structure of the primary organogermylamine.

We have found that trimesitylgermylamine can be prepared easily in high yield (84%) by the reaction of sodium or lithium amide with trimesitylchlorogermane (eqs. 2 and 3), a classical route for Ge–N bond formation [4,5].

$$\operatorname{Mes}_{3}\operatorname{GeCl} + \operatorname{NaNH}_{2} \xrightarrow{\operatorname{Hr}_{3} \operatorname{id}_{2}}_{\operatorname{Et}_{2}O, \ 20^{\circ}\mathrm{C}} \operatorname{Mes}_{3}\operatorname{GeNH}_{2} + \operatorname{NaCl}$$
(2)

$$Mes_{3}GeCl + LiNH_{2} \xrightarrow{IHF, 20^{\circ}C} Mes_{3}GeNH_{2} + LiCl$$
(3)

In reaction 2, ammonia was used in excess because metallic sodium must be absent to avoid the formation of Mes_3GeH (eq. 4)

$$\operatorname{Mes}_{3}\operatorname{GeCl} \xrightarrow[-\operatorname{NaCl}]{\operatorname{Mes}} \operatorname{Mes}_{3}\operatorname{Ge}^{+} \xrightarrow[\operatorname{solvent}]{\operatorname{Hes}} \operatorname{Mes}_{3}\operatorname{GeH}$$
(4)

Trimesitylgermylamine melts at 166°C, is not moisture-sensitive and is soluble in most polar and non-polar organic solvents $[6,7^*]$.

In contrast to most germanium-nitrogen compounds [4,5] the hydrolysis of Mes_3GeNH_2 is very slow, requiring 6 h at 140°C for completion (eq. 5).

$$\operatorname{Mes}_{3}\operatorname{GeNH}_{2} + \operatorname{H}_{2}\operatorname{O} \xrightarrow{\operatorname{C}_{6}\operatorname{H}_{6}, \ 140^{\circ}\mathrm{C}} \operatorname{Mes}_{3}\operatorname{GeOH} + \operatorname{NH}_{3}$$
(5)

The reaction with methanol (eq. 6), producing Mes_3GeOMe [7*], is only 72% complete after 20 h at 80°C in a sealed tube:

$$Mes_{3}GeNH_{2} + MeOH \longrightarrow Mes_{3}GeOMe + NH_{3}$$
(6)

Similarly, aqueous hydrochloric acid (12 N) reacts gradually with Mes_3GeNH_2 in benzene or diethyl ether solution to give Mes_3GeCl in quantitative yield after 5 h at 20°C.

By contrast, gaseous HCl reacts (eq. 7) instantaneously and exothermally with Mes_3GeNH_2 in ether solution.

$$\operatorname{Mes}_{3}\operatorname{GeNH}_{2} + 2\operatorname{HCl} \xrightarrow{\operatorname{Et}_{2}\operatorname{O}} \operatorname{Mes}_{3}\operatorname{GeCl} + \operatorname{NH}_{4}\operatorname{Cl}$$

$$\tag{7}$$

In the reaction of Mes_3GeNH_2 with 4-methylphenol, we were able to characterize the intermediate ammonium salt (eq. 8) which decomposes on heating to trimesitylgermylparamethylphenoxide Mes_3GeOAr [7*].

$$\operatorname{Mes}_{3}\operatorname{GeNH}_{2} + \operatorname{HOAr} \longrightarrow \left[\operatorname{Mes}_{3}\operatorname{GeNH}_{3}\right]^{+} \left[\operatorname{OAr}\right]^{-} \xrightarrow[-\operatorname{NH}_{3}]{}^{+}\operatorname{Mes}_{3}\operatorname{GeOAr} \qquad (8)$$
$$(\operatorname{Ar} = p\operatorname{-CH}_{3}\operatorname{C}_{6}\operatorname{H}_{4} \operatorname{-})$$

Apparently, when protonation on nitrogen is effective, secondary attack of a nucleophile on the germanium center is strongly dependent upon its steric hindrance. This is true in reactions with acid chlorides, in which trimethylacetyl chloride, ¹BuCOCl, produces not only the chlorogermane, as is usually observed in the case of germylamines [4,5] (Scheme 1, A), but also the Ge–N bonded amide $[7^*]$, as in the classical reaction of primary organic amines (Scheme 1, B).

Scheme 1.

^{*} Reference number with asterisk indicates a note in the list of references.

Fig. 1. Model of Mes_3GeNH_2 with atoms having van der Waals radii, viewed along the pseudo- C_3 axis, showing the protection of the central Ge atom.

The reactivity and exceptional stability of Mes_3GeNH_2 is consistent with the presence of a tetrahedral germanium atom sterically protected by the large mesityl groups, leaving the attached nucleophilic nitrogen atom more exposed to electrophilic attack. This is confirmed by its structure based on preliminary single crystal X-ray diffraction measurements [8*]. The Ge atom has approximate tetrahedral coordination, with an average Ge-C bond length of 1.978(3) Å and a Ge-N bond length of 1.854(3) Å. A propeller-like arrangement of the mesityl groups results in a pseudo-C₃ axis along the Ge-N vector and thereby hinders the approach of potential reactants along this direction, as evident from models with atoms having appropriate van der Waals radii (Figs. 1 and 2).

Fig. 2. Model of Mes_3GeNH_2 viewed along the pseudo- C_3 axis, with atoms having van der Waals radii, showing the NH_2 group exposed over the central Ge atom.

References and notes

- 1 C.A. Kraus and H.S. Nutting, J. Am. Chem. Soc., 54 (1932) 1622.
- 2 H.J. Göetze, Chem. Ber., 108 (1975) 988.
- 3 H.J. Göetze and W.Z. Garbe, Z. Anorg. Allg. Chem., 454 (1979) 99.
- 4 M.F. Lappert, P.P. Power, A.R. Sanger and R.C. Srivastava, Metal and Metalloïd Amides, Harwood-Wiley, Chichester, 1980.
- 5 P. Rivière, M. Rivière-Baudet and J. Satgé, in G. Wilkinson, F.G.A. Stone and E.W. Abel (Eds.), Comprehensive Organometallic Chemistry, Vol. 2, Pergamon, Oxford, 1982, Chap. 10.
- 6 M. Rivière-Baudet, A. Morère, M. Onyszchuk, J.F. Britten and I. Wharf, in Abstracts of the XIVth International Conference on Organometallic Chemistry, Detroit, August 19–24th, 1990.
- 7 Physical data for new products were as follows. Mes₃GeNH₂: m.p. 166°C. IR: ν_{as} (NH) 3420, ν_{s} (NH) 3340 cm⁻¹ (C₆H₆ solution). ¹H NMR (C₆D₆): δ C₆H₂, 6.74 (s, 6H): *o*-CH₃, 2.32 (s, 18H); *p*-CH₃, 2.11 (s, 9H); NH₂, 0.55 (s, 2H, displaced by D₂O) ppm. ¹³C NMR (CDCl₃) δ Cl, 140.52; C2, 144.55; C3, 130.83; C4, 139.35; *o*-CH₃, 25.55; *p*-CH₃, 21.98 ppm. MS (EI): *M*⁺, 447; (*M*⁺ - NH₃), 430; (*M*⁺ - Mes), 328.

Mes₃GeOMe: m.p. 176°C, and ¹H NMR (CDCl₃) δ C₆H₂, 6.84 (s, 6H); *o*-CH₃, 2.32 (s, 18H); *p*-CH₃, 2.29 (s, 9H); CH₃O, 3.41 (s, 3H) ppm. ¹³C NMR (CDCl₃) δ C1, 136.92; C2, 143.61; C3, 129.35; C4, 136.66; *o*-CH₃, 23.59; *p*-CH₃, 21.04; CH₃O, 52.61 ppm. Mass (Dci CH₄) M^+ – 1: 461.

[Mes₃GeNH₃]⁺[OC₆H₄CH₃]⁻: IR: ν (NH₃⁺): strong, large, mult., abs. band 2577 cm⁻¹ (CCl₄). ¹H NMR: (C₆D₆) δ CH_{ar}, 6.65 (10H); *o*-CH₃, 2.25 (s, 18H); *p*-CH₃, 2.08 (12H); NH₃, 3.47 (s, 3H) ppm. Mes₃GeOC₆H₄CH₃: m.p. 180–185°C; and ¹H NMR (C₆D₆) δ CH_{ar}, 6.65 (10H); *o*-CH₃, 2.34 (s, 18H); *p*-CH₃, 2.07 (12H) ppm. ¹³C NMR (CDCl₃) δ (Mes group): C1, 137.31; C2, 143.20; C3, 129.52; C4, 139.06; *o*-CH₃, 23.91; *p*-CH₃, 21.11 ppm. (Phenyl group): C1, 153.72; C2, 115.24; C3, 130.02; C4, 129.52; *p*-CH₃, 20.54 ppm.

Mes₃GeNHCO¹Bu: m.p. 179°C, IR: ν (NH) 3438, ν (C=O) 1660 cm⁻¹ (C₆H₆). ¹H NMR (C₆D₆) δ C₆H₂, 6.73 (s, 6H); *o*-CH₃, 2.43 (s, 18H); *p*-CH₃, 2.07 (s, 9H); ¹Bu, 1.06 (s, 9H); NH, 5.42 (s, 1H) ppm. ¹³C NMR (C₆D₆) δ C1, 137.37; C2, 143.56; C3, 130.12; C4, 138.82; CO, 180.22; ¹Bu, CH₃, 28.08; C^{IV}, 39.95; *o*-CH₃, 23.67; *p*-CH₃, 20.95. MS (EI): M^+ , 531; (M^+ – Mes), 412.

8 Crystal data: $C_{27}H_{35}$ GeN, FW = 446.17, monoclinic, space groups $P2_1/c$, a 11.201(2), b 12.449(1), c 18.011(2) Å, β 106.777(9)°, U 2404.6(4) Å³, D_c 1.139 g cm⁻³, Z = 4, Cu- K_{α} radiation, λ 1.54178 Å, μ 10.77 cm⁻¹. A Rigaku AFC5R diffractometer at the McGill X-ray Crystal Structure Laboratory was used to collect data at $23 \pm 1^{\circ}$ C with the ω -2 θ scan technique to a maximum 2 θ of 119.9°, resulting in 3977 reflections of which 3765 were unique (R_{int} 0.027). Final R = 0.037, $R_w = 0.047$ for 298 parameters, using 2846 reflections with $I > 3\sigma(I)$. Hydrogen atoms were placed in calculated positions and refined with a fixed thermal parameter. The TEXAN structure-solving program of the Molecular Structure Corporation, Texas, was used in all calculations. Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre.